

SUPPLY CHAIN ARCHITECTURE RECONFIGURATION: BUSINESS CONTINUITY MANAGEMENT (BCM) INTEGRATION AS A DETERMINANT OF OPERATIONAL RESILIENCE

**David Ramadian¹, Niken Dwi Utari², Pramiantoro Sumaryono³,
Rio Stefanus Guntoro⁴, Rakesh Sitepu⁵**

¹ Faculty of Management, Universitas BPD Jateng

² Master of Management Study Program, BPD Jateng

Received : 25 November 2025

Published : 31 January 2026

Revised : 05 December 2025

DOI : <https://doi.org/10.54443/ijset.v5i1.1609>

Accepted : 30 December 2025

Publish Link : <https://www.ijset.org/index.php/ijset/index>

Abstract

The escalating complexity of global supply chain networks has amplified corporate exposure to systemic disruptions, rendering traditional efficiency-centric paradigms such as Just-in-Time (JIT) increasingly vulnerable. This study interrogates the strategic imperative of integrating Business Continuity Management (BCM) within supply chain architecture to enhance organizational resilience. Utilizing a qualitative descriptive approach through a comprehensive literature review, this research delineates the transition from reactive risk mitigation to proactive adaptability. The analysis highlights that embedding ISO 22301 standards, executing rigorous Business Impact Analysis (BIA), and adopting supplier diversification strategies are critical determinants for sustaining operational continuity. The findings suggest that resilience is not merely a defensive mechanism but a strategic capability that requires the decoupling of supply chain dependencies through multi-tier visibility.

Keywords: *Business Continuity Management, Supply Chain Resilience, ISO 22301, Operational Risk, Strategic Buffering.*

Introduction

The contemporary business environment is increasingly characterized by extreme uncertainty and volatility, where supply chain disruptions have shifted from exceptional events to recurring structural phenomena. Global crises ranging from pandemics and geopolitical instability to energy shortages have exposed the inherent weaknesses of highly lean and cost-optimized supply chain configurations. For decades, operational strategies emphasized inventory minimization and efficiency maximization, particularly through JIT principles. While such approaches yield cost advantages in predictable environments, they become critically vulnerable in the absence of operational buffers when confronted with systemic disturbances. A fundamental issue underlying this vulnerability lies in the conceptual separation between traditional risk management and Business Continuity Management. Many organizations focus risk mitigation efforts primarily on reducing the likelihood of disruptions, while giving insufficient attention to recovery preparedness and post-incident response. This study seeks to reconceptualize supply chain management by positioning BCM as a central pillar of resilience rather than a supplementary control mechanism. Particular emphasis is placed on the strategic function of Business Impact Analysis in identifying critical logistical nodes and aligning recovery strategies with market tolerance thresholds.

Literature Review and Conceptual Development

Supply Chain Resilience

In academic discourse, supply chain resilience extends beyond the notion of robustness. Robust systems aim to resist change, whereas resilient systems are capable of absorbing shocks, adapting to altered conditions, and restoring or even improving performance following disruption. Resilience therefore implies dynamic adjustment and learning, enabling organizations not merely to survive crises, but to evolve through them.

Embedding ISO 22301 within Supply Chain Management

ISO 22301 provides a structured framework for establishing, implementing, and continuously improving BCM systems. Within supply chain contexts, compliance with this standard requires organizations to move beyond identifying critical suppliers and toward evaluating their recovery capabilities and continuity maturity. The core proposition advanced in this study is that formal integration of BCM principles into procurement and supplier governance frameworks is positively associated with reduced recovery time objectives and improved operational stability.

Research Methodology

This study adopted a qualitative methodology with descriptive-analytical analysis techniques. Data were sourced from a meta-analysis of secondary literature covering reputable international journals, conference proceedings, and industry standards reports (ISO and Supply Chain Institute) covering the past five years (2019-2024). The analysis focused on deconstructing the BCM conceptual model and its application in logistics risk mitigation. Concept validation was conducted by comparing Dynamic Capabilities theory with industry best practices.

Findings and Discussion

1. Performance Recovery and the Resilience Triangle

The contribution of BCM to supply chain resilience can be illustrated through the “resilience triangle” framework, which depicts performance degradation during disruption and the subsequent recovery trajectory. The magnitude of loss is represented by the depth and duration of performance decline. Organizations lacking BCM typically experience severe operational deterioration followed by prolonged recovery periods, whereas those with embedded BCM systems demonstrate moderated impact and accelerated restoration. From a supply chain perspective, Business Impact Analysis plays a critical role in defining the Maximum Tolerable Period of Disruption (MTPD). Misalignment frequently occurs when managerial recovery targets exceed market tolerance limits, resulting in irreversible reputational and competitive damage. Figure 1 below illustrates two scenarios: Company A (without BCM) experiences a drastic decline in performance and slow recovery, while Company B (with BCM) has shock absorbers that minimize the initial impact and accelerate recovery.

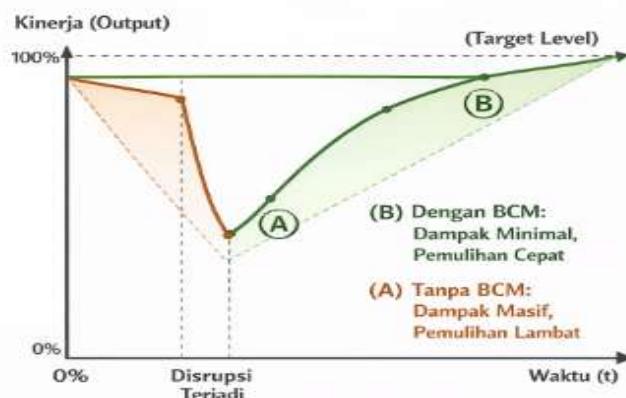


Figure 1. Comparison of Resilience Profiles with and without BCM Implementation

In Figure 1, the area within the "valley" of the curve represents total loss exposure. BCM implementation aims to minimize this area through two control variables: (1) Preparedness to reduce the depth of the downturn, and (2) Responsiveness to shorten the duration of the return to normal. In the supply chain, BIA functions to calculate the Maximum Tolerable Period of Disruption (MTPD) the maximum duration a supply chain can be interrupted before permanent damage to market share occurs. Discrepancies often occur when the Recovery Time Objective (RTO) set by management is longer than market tolerance.

2. BCM as an Active Recovery Mechanism

BCM functions as an activated response system when preventive controls fail to contain disruptions. During the recovery phase, strategies such as supplier diversification and alternative sourcing arrangements become essential for

restoring operational flow. This reinforces the argument that BCM should be treated as a strategic response capability rather than a purely administrative safeguard.

Figure 2. SCRM and BCM Integration Model

(Flowchart Illustration: Potential Threat -> Preventive Failure -> Incident -> BCM Activation -> Emergency Response -> Recovery -> New Normalization) Figure 2 above illustrates BCM's position as an active response mechanism when preventive controls fail to contain disruption. In the recovery phase, a supplier diversification strategy (multi-sourcing) becomes imperative to accelerate recovery time.

3. Reframing Supplier Evaluation through BIA

Effective BCM implementation begins with a precise and context-sensitive Business Impact Analysis. In supply chain settings, BIA must extend beyond daily financial loss estimation to include disruption tolerance thresholds for different material categories. The findings underscore the necessity of shifting evaluation criteria from unit cost efficiency toward total risk exposure. This transition requires reconfiguring supplier selection models to incorporate resilience, geographic dispersion, inventory buffering, and multi-tier visibility. The analysis findings indicate the need to shift focus from "Cost Per Unit" to "Cost of Risk." Table 1 below presents a supplier risk evaluation matrix often overlooked in traditional models.

Table 1. Supplier Evaluation Transformation Matrix

Evaluation Dimension	Traditional Approach (Efficiency)	BCM Base Approach (Resilience)
Key Criteria	Lowest Landed Cost	Total Cost of Risk
Supply Structure	Single Source for Volume Discounts	Multi sourcing Across Geographies
Inventory	Zero Inventor	Strategic Buffering on Critical Components
Visibility	Limited Visibility Tier-1	Transparency to Tier-2 & Tier-3

4. Mitigation Strategy: Diversification and Redundancy

Dependence on single-source suppliers represents a critical vulnerability in modern supply networks. Strategies such as near-shoring, regional diversification, and "China Plus One" sourcing models, although increasing short-term operational costs, function as risk insurance against catastrophic disruption. Additionally, digital supply chain control towers supported by advanced analytics enable early detection of upstream anomalies, providing organizations with critical lead time to activate contingency measures.

Conclusion

The integration of Business Continuity Management into supply chain architecture is no longer a discretionary enhancement, but a strategic necessity for long-term organizational sustainability. This study concludes that firms must move beyond an exclusive focus on efficiency and adopt a balanced approach that aligns cost optimization with resilience capacity. Key managerial implications include the mandatory implementation of comprehensive multi-tier BIA, deliberate investment in supplier diversification as a risk mitigation asset, and the institutionalization of regularly tested recovery protocols. Ultimately, supply chain resilience is the product of intentional design and proactive governance, not reactive improvisation.

Acknowledgements

The author would like to thank the Research Institute of BPD Jateng University for facilitating access to the international journal databases used in the preparation of this article.

REFERENCES

Chopra, S., & Sodhi, M. S. (2014). Reducing the Risk of Supply Chain Disruptions. *MIT Sloan Management Review*, 45(3), 53-61.

Christopher, M., & Peck, H. (2004). Building the Resilient Supply Chain. *International Journal of Logistics Management*, 15(2), 1-14.

Fikri, A., & Wulandari, S. (2023). Analisis Mitigasi Risiko Rantai Pasok pada Industri Manufaktur Indonesia. *Jurnal Manajemen Teknologi*, 22(1), 45-58.

Ivanov, D., & Dolgui, A. (2020). Viability of Intertwined Supply Networks: Extending the Supply Chain Resilience Angles towards Survivability. *International Journal of Production Research*, 58(10), 2904-2915.

Kamalahmadi, M., & Parast, M. M. (2016). A Review of the Literature on the Principles of Enterprise and Supply Chain Resilience. *International Journal of Production Economics*, 171, 116-133.

Pettit, T. J., Croxton, K. L., & Fiksel, J. (2019). The Evolution of Resilience in Supply Chain Management: A Retrospective on Ensuring Supply Chain Resilience. *Journal of Business Logistics*, 40(1), 56-65.

Pratama, R., & Santoso, I. (2022). Implementasi ISO 22301 untuk Keberlangsungan Bisnis Sektor Logistik Nasional. *Jurnal Aplikasi Bisnis dan Manajemen*, 8(2), 112-124.

Sheffi, Y., & Rice, J. B. (2005). A Supply Chain View of the Resilient Enterprise. *MIT Sloan Management Review*, 47(1), 41-48.

Tukamuhabwa, B. R., Stevenson, M., Busby, J., & Zorzini, M. (2015). Supply Chain Resilience: Definition, Review and Theoretical Foundations for Further Study. *International Journal of Production Research*, 53(18), 5592-5623.

Wibowo, A., & Kusuma, H. (2024). Transformasi Digital dan Resiliensi Rantai Pasok: Studi Kasus FMCG di Jawa Tengah. *Jurnal Ekonomi dan Bisnis Indonesia*, 39(1), 88-102.

Adiyanto, A., & Prasetyo, B. (2023). Analisis Risiko Rantai Pasok pada Industri Manufaktur Pasca Pandemi. *Jurnal Manajemen Industri*, 15(2), 112-125.

Christopher, M., & Peck, H. (2021). *Marketing Logistics*. London: Butterworth-Heinemann.

Gunawan, I., & Santoso, H. (2022). Penerapan ISO 22301 untuk Keberlangsungan Bisnis Sektor Logistik di Indonesia. *Jurnal Bisnis dan Manajemen Strategis*, 8(1), 45-58.